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Abstract
This paper introduced a numerical method for solving generalized Abel integral (GAI) 

equations and generalized Abel integro differential (GAID) equations. This method is based 
upon Touchard polynomials (TPs) approximation. The Touchard polynomials were first 
presented and the resulting Touchard matrices were utilized to transform the generalized 
Abel integral and integro differential equations into a system of linear algebraic equations. 
The results of the presented method were obtained through some examples of the first and 
second types of equations under study. All results for this method have been compared with 
those of the presented methods in the literature.

Subject Classification:  20C10; 22E27.

Keywords: Generalized Abel integral equation, Generalized Abel integro differential equation, 
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1.  Introduction

The following is a summary of the Abel problem: Niles Abel is a 
Norwegian mathematician who published a paper in 1823 aiming to 
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study a smooth vertical curve on the x-y plane that allows a particle to fall 
without friction from the highest known point to the origin point using 
only gravity and no initial velocity [1, 2, 3]. In other words, the Integral 
equations  ofAbel have a wide range of applications: Mathematical physics, 
semiconductors, chemistry, heat conduction, electrochemistry, scattering 
theory, chemical reactions, seismology, metallurgy, fluid movement, and 
population dynamics etc. are just a few examples [1, 2,3,4]. Many scientists, 
mathematicians, and physicists have worked hard in recent years to find 
numerical solutions for generalized Abel integral and integro differential 
equations, among  these strategies: Laplace transform by power series 
[4], Taylor collocation method [5], the barycentric rational interpolation 
technique and the Legendre Gauss quadrature method [6], homotopy 
perturbation technique [7], Bernstein polynomials method and Legendre 
wavelets [8], Lagrangian basis functions technique [9], finally Chebyshev 
polynomials method [10]. This paper’s structure is as follows: Method of 
the solution, Approximation function, solutions generalized Abel integral 
equations, solution accuracy, test with the illustrative examples, plot the 
graphs are presented, brief of conclusions, the references are also listed.

The generalized Abel integral equations of the second and first types 
are [4, 5] respectively have the forms: 
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and the 2nd type of generalized Abel integro differential equation [8, 9, 10] 
has the form:
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with initial condition 0(0) ,N N= where ( )( ) ,dN u
du

N u¢ =  ρ is a given real 
number value, m(u) is a well-known function, while N(u) is unknown.

2.  Method of the Solution

Let’s start [11, 12, 13, 14, 15] with the definition and description of  
Touchard polynomials, which are polynomial sequences the binomial  
type specified over [0, 1], as developed by French mathematician Jacques 
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Touchard (1885-1968). His name was given to these polynomials, which 
represent the following formula:
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where, a and n denote to the index and degree respectively of Touchard 
polynomials. The first six of these polynomials are as follows: 

2.1 Approximation Function

Assume that the function ( )nN u  is approximated as follows using 
the (TPs): 
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where 0 ≤ u ≤ 1, for a ≥ 0, the function 0{ ( )}n
a ay u =  denotes nth-degree of 

Touchard basis polynomials, as defined in equation (4), ap 's  are unknown 
parameters that will be provided later and n any positive integer number. 
Equation (5) can now be expressed as a dot product:
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equation (6) can be written as:
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where hhJ (h=0, 1, …, n) are the power bases on which the (TPs)parameters 
are calculated, and the matrix is definitely invertible. Since, the derivative 
of equation (4) is:
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then, the derivative of equation (7) is: 
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3.  Solutions Generalized Abel Integral Equations

Let’s say that using Tochard polynomials to find an approximate 
numerical solution to equation (1). By using equation (5), suppose that:
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now, substituting the equation(10) into the equation(1) yields: 

0 0

1( ) ( ) ( ) ,             (11) 
( )

un n

a a a a
a a

p y u m u p y d
u t

r

m m
m= =

= + ¼
-å åò

by using equation(6) then equation(11) becomes:
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by using equation(7), then equation(12) becomes:
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The unknown parameters are obtained by selecting us  0,1, ..( ., )ns =  
in the interval [0, 1] after calculating the integrations of equation (13). As a 
result, equation (13) becomes a (n+1) linear algebraic system of equations 
with (n+1) parameters (p0, p1, …, pn)that are unknown can be solved using 
the “Gauss elimination method”. Finally, by substituting these parameters 
into equation (5), the numerical solutions are obtained.

Note: Equations (2) and (3) can be solved using the same procedures.

4.  Solution Accuracy

4.1 For Generalized Abel Integral Equation

The proposed method’s accuracy is tested in this section. [15, 16, 17, 
18, 19].Since equation (12) has the following form:
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also equation (5) has the following formula:
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equation (13) was applied to find the unknown Touchard parameters
0 .{ }n

a ap =  Equation (10), on the other hand, gives us:
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since this is the only polynomial solution of equation (13), and it’s included 
into the equation (14). So, assume that u ug=  belong to the interval [0, 1], 

  0,g = 1, ,  .n¼ Now, the function of error can be expressed as follows:
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As a result, at each point ,ug  the difference for error function  

Ef ( ug ) will be smaller than any positive integer 0.Î>  Then, using the 
relation, the error function Ef (u) can be calculated:

0 0

1( ) ( ) ( ) ( ) ,
( )

un n

a a a a
a a

Ef u p y m u p y d
u t

r

q m m
m= =

= - -
-å åò

thus, ( ) .Ef u £Î  
Note: Equations (2) and (3) can be computed using the same 

procedure.

6.  Illustrative Examples

This section includes some numerical examples to demonstrate the 
feasibility and efficacy of the suggested method for locating solutions 
utilizing matlabR2018b codes.

Example 1: Solve the (GAI) equation of the 1st type [1(page 246), 5, 20]

3

2 2
0

2 1 ( ) ,   
3

u

u N d
u

p m m
m

=
-

ò

3( )N u up= is the exact solution. By applying the proposed method 
in equation (13) for n=3 and selecting 0 10.1, 0.2u u= =  and 1 0.3u =  
from the interval [0, 1] and solving the system in “Gauss elimination” 
method, we obtained the following Touchard parameters, substituting 
these parameters in equation (5), we have the same given exact solution 
(approximate numerical solution) as follows:

3
3 0 1 2 3( ) ( ) ( ) (3 ) ( ) ( 3 ) ( ) ( ) ,( )  N u y u y u y u y u up p p p p= - + + - + =
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In the reference [20], an exact solution for n = 3 was determined by using 
the Legendre polynomials approach. Moreover, [5] obtained 0.000211964 
as the maximum error for n=5 by using Taylor collocation approach. As 
a result, our proposed method outperforms Taylor collocation method 
and it’s identical in precision to Legendre polynomials approach. Figure1 
presents the comparison with the exact solution for n=3.

Example 2: Solve the (GAI) equation of the 1st type [20, 21, 22, 23]
2 3 431 27 11

4 4 4
1

40

32768 262144 128 1 ( ) ,   
100947 908523 231 ( )
0 1

u uu u u N d
u

u

m m
m m

m

+ ++ + =
-

£ £

ò

2( )N u u=  is the exact solution. By applying the presented method in 
equation (13) for n=2 and selecting the points u0 = 0.1, u1 = 0.2 and u2 = 0.3 
from the interval [0, 1] and solving the system, we have the same given 
exact solution (approximate numerical solution) as follows: 

2
2 0 1 2( ) (1) ( ) ( 2) ( ) (1) ( )N u y u y u y u u= + - + =

which is the same exact solution of this example. [20], using Laguerre 
polynomials, an exact solution for n = 2 was obtained. Moreover, [21] 
using Jacobi collocation method, the exact solution for n ≥ 2 was found. 
[22] obtained the highest number of order errors 3 23 10 , 2 10 ,- -* *

Figure 1
Example 1 (n = 3) is compared
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438 10 , 2 10 ,--* *  and 21 10-*  using the methods used in his research for 
h = 0.05. In addition to, [23] when h = 0.025, the mid-point, trapezoidal, 
Richardson extrapolation, and product integration procedures were used 
to produce the errors of orders 5 2 64 10 , 1 10 , 1 10 ,- - -* - * - *  and 42 10-*
respectively. Our method is more efficient than the ones mentioned. 
Figure 2 presents the comparison with the exact solution for n=2.

Example 3: Solve the (GAI) equation of the 2nd type [1(page 250), 5]

37
4 4

1
40

32 4 1( ) 1 2 ( ) ,   0 1
21 3 ( )

u

N u u u u N d u
u

m m
m

= - - + - £ £
-

ò

which has the exact solution N(u) = 1 – 2u. by applying the presented 
method in equation (13) with n = 3, selecting the points from the interval 
[0, 1] and solving the algebraic system, have the same given exact solution 
(approximate numerical solution) as shown in the following: 

3 0 1( ) (3) ( ) ( 2) ( ) 1 2 ,N u y u y u u= + - = -

also [5] obtained the exact solution by Taylor-collocation technique for n = 
3. Figure3 presents the comparison with the exact solution for n=3. 

Figure 2 
Example 2 (n = 2) is compared
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Figure 3 
Example 3 (n = 3) is compared

Example 4: Solve the (GAID) equation of the 2nd type [10, 19]:

0

( ) 1( ) ( ) 0.2 ,   0 1, (0) 1, 
( )

u NN' u N u u d u N
u
m

m
m

¢ += - - + < £ =
-ò

where N(u) = 1 - u, is the exact solution.
By applying the presented method in equation (13) for n=2, 3 and 4, 

have the following Touchard parameters, substituting these parameters in 
equation (5), getting the same given exact solution (approximate numerical 
solution) as shown in the following:

2 0 1

3 0 1

4 0 1

( ) (2) ( ) ( 1) ( ) 1  ,
( ) (2) ( ) ( 1) ( ) 1  ,
( ) (2) ( ) ( 1) ( ) 1

N u y u y u u
N u y u y u u
N u y u y u u

= + - = -
= + - = -
= + - = -

Figure 4
Example 4 (n = 4) is Compared
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2 0 1

3 0 1

4 0 1

( ) (2) ( ) ( 1) ( ) 1  ,
( ) (2) ( ) ( 1) ( ) 1  ,
( ) (2) ( ) ( 1) ( ) 1

N u y u y u u
N u y u y u u
N u y u y u u

= + - = -
= + - = -
= + - = -

The reference [19], for n = 2, 3, and 4, an exact solution was obtained 
by applied Laguerre and Touchard polynomials. Besides, [10] used 
the Chebyshev polynomials for n = 8, 12, and 16 to find the maximum 
absolute error of order 1710 .-  Figure 4 presents the comparison with the 
exact solution for n= 4 

7.  Conclusions 

In this manuscript, the technique based on (TPs) has been used to 
solve (GAI) equations of the first, second type and (GAID) equation. A 
different set of points belonging to the given interval [0, 1] and many 
different degrees of Touchard polynomials were used. Four examples were 
solved, two of which were (GAI) equations of the first type, one of the 
second type and the fourth was (GAID) equation using the Matlab R2018b.
When all of the examples were solved, exact solutions were obtained, and 
the results were compared to many of the approaches described in the 
literature. All of the results in the proposed technique were compared 
to the given exact solutions of examples via graphs, demonstrating the 
method’s effectiveness and accuracy.
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